Sketching Merge Trees for Scientific Visualization

Mingzhe Li, Sourabh Palande, Lin Yan, and Bei Wang

Abstract— Merge trees are a type of topological descriptors that record the connectivity among the sublevel sets of scalar fields.
They are among the most widely used topological tools in visualization. In this paper, we are interested in sketching a set of merge
trees using techniques from matrix sketching. That is, given a large set 7 of merge trees, we would like to find a much smaller set of
basis trees S such that each tree in 7 can be approximately reconstructed from a linear combination of merge trees in S. A set of
high-dimensional vectors can be approximated via matrix sketching techniques such as principal component analysis and column
subset selection. However, until now, there has not been any work on sketching a set of merge trees. We develop a framework for
sketching a set of merge trees that combines matrix sketching with tools from optimal transport. In particular, we vectorize a set of
merge trees into high-dimensional vectors while preserving their structures and structural relations. We demonstrate the applications of
our framework in sketching merge trees that arise from time-varying scientific simulations. Specifically, our framework obtains a set of
basis trees as representatives that capture the “modes” of physical phenomena for downstream analysis and visualization.

Index Terms—Merge trees, matrix sketching, topology in visualization, ensemble analysis

+

1 INTRODUCTION

Topological descriptors such as merge trees, contour trees, Reeb graphs,
and Morse—Smale complexes serve to describe and identify characteris-
tics associated with scalar fields, with many applications in the analysis
and visualization of scientific data (e.g., see the surveys [37,42]). Ma-
trix sketching [69], on the other hand, is a class of mathematical tools
that approximate a large data matrix with smaller and sparser matri-
ces [24]. Principal component analysis (PCA) [54], for example, is a
type of matrix sketching. We are interested in applying matrix sketch-
ing techniques to a set of topological descriptors, specifically merge
trees, for scientific visualization.

We formulate our problem as follows: given a large set 7 of merge
trees, we would like to find a much smaller set of basis trees S such
that each tree in 7 can be approximately reconstructed from a linear
combination of trees in S. The set 7 may arise from a time-varying
field or an ensemble of scientific simulations generated with varying
parameters and/or different instruments. We aim to develop a merge
tree sketching framework that:

* Identifies good representatives that capture topological variations
in a set of merge trees as well as outliers; and

* Obtains a compressed representation of a large set of merge trees
as a much smaller set of basis trees together with a coefficient
matrix for downstream analysis and visualization.

A sketch of 7 with S gives rise to a significantly smaller representation
of 7. Elements in S will serve as good representatives of 7, whereas
elements with large sketching errors will be considered as outliers.

The ability to extract a basis set of merge trees is important for
numerous applications, for which scientists are interested in detect-
ing the “modes” of physical phenomena. This extraction could be
achieved by computing a basis set, matching merge trees to the basis
set, and computing the errors of each input tree w.r.t. that basis set.
‘We could potentially uncover repeated phenomena that provide deep
phenomenological insight. Our framework could recover cyclical phe-
nomena for time-varying data or derive consensus sets for ensembles.
Our contributions are:

* Mingzhe Li is with the University of Utah. E-mail: mingzhel @sci.utah.edu.
e Lin Yan is with the Argonne National Laboratory. E-mail: lyan@anl.gov.
e Sourabh Palande is with the Michigan State University.
E-mail: sourabh.palande @ gmail.com.
* Bei Wang is with the University of Utah. E-mail: beiwang @sci.utah.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

* We combine tools from optimal transport with matrix sketching
techniques to give a class of algorithms for sketching a set of
merge trees. This is the first time matrix sketching is applied to a
set of topological descriptors.

* We introduce a new distance between merge trees by adapting the
Gromov-Wasserstein distance [18,47,55] in optimal transport.

* We provide experimental results that demonstrate the utility of
our framework in sketching merge trees that arise from scientific
simulations. Specifically, we show that understanding how a set
of merge trees is approximated by a smaller set can be particularly
useful for the study of time-varying scalar fields and ensembles,
where our framework can be used to obtain compact representa-
tions for downstream analysis and visualization. The basis set
extracted from matrix sketching can serve as good representatives
in detecting the modes of physical phenomena.

Our framework offers an exciting direction of utilizing randomized
linear algebra for topological descriptors in visualization.

2 AN OVERVIEW AND A PRIMER ON MATRIX SKETCHING

Data sketching is powerful in the analysis of massive datasets [44] and
has enjoyed diverse and exciting advances in recent years. A sketch is
a compressed mapping of the full dataset onto a smaller data structure
that serves as a summary that retains certain properties of interest.
A sketch is typically “easy to update with new or changed data and
allows certain queries whose results approximate queries on the full
dataset.” [56]

a; a; b]' Matrix Sketching

Yi

- ”
= X

D)

ch XN
AdaxnN Adxn Baxk
Input Sketched Baéis
Merge Tree Merge Tree Merge Tree

I | |
/\ |/
[A\ A

T; T S;
Fig. 1: The overall pipeline for sketching a set of merge trees.

Fig. 2: Rotating Gaussian: Visualizing a time-varying mixture of Gaussian functions (left) together with their corresponding merge trees (right).
Merge trees at time step 4 and 7 are selected as the representatives to describe the topology of the ensemble.

We are inspired by the idea of matrix sketching. A sketch of a matrix
A is another matrix B that is significantly smaller than A, but still
approximates it well [41]. Many matrix sketching techniques build
upon numerical linear algebra and vector sketching. A set of high-
dimensional vectors is sketchable via matrix sketching techniques such
as principle component analysis (PCA) and column subset selection
(CSS), as illustrated in Fig. 1 (gray box).

Given a dataset of N points with d features, represented as a d x
N matrix A (with row-wise zero empirical mean), together with a
parameter k, PCA aims to find a k-dimensional subspace H of R¢
that minimizes the average squared distance between the points and
their corresponding projections onto H. For every column vector a;
of A, PCA finds a k-dimensional embedding y; (a column vector of
Y) along the subspace H to minimize ||A — A||% = ||A — BY||%. B
is a d X k matrix whose columns b1, b, . . ., bx, form an orthonormal
basis for H. Y is a k x N coefficient matrix, whose column y; encodes
the coefficients for approximating a; using the basis from B. That is,
a; ~ (?Lv, = Z?:1 b]'Yjﬂ;.

Another technique we discuss is CSS, whose goal is to find a small
subset of the columns in A to form B such that the projection error of
A to the span of the chosen columns is minimized, that is, to minimize
||[A—A||% = ||A— BY||%, where we restrict B to come from columns
of A. Such a restriction is important for data summarization, feature
selection, and interpretable dimensionality reduction [8]. Thus, with
PCA or CSS, given a set of high-dimensional vectors, we could find a
set of basis vectors such that each input vector can be approximately
reconstructed from a linear combination of the basis vectors.

Now, what if we replace a set of high-dimensional vectors by a
set of objects that encode topological information of data, specifically
topological descriptors? Until now, there has not been any work on
sketching a set of merge trees. In this paper, we focus on merge trees,
which are a type of topological descriptors that record the connectivity
among the sublevel sets of scalar fields. We address the following
question: Given a large set 7 of merge trees, can we find a much
smaller basis set S as its “sketch”?

Our overall pipeline is illustrated in Fig. 1 and detailed in Sec. 6. In
steps 1 and 2, given a set of N merge trees 7 = {T1,T>,--- ,In}
as input, we represent each merge tree 7; as a measure network and
employ the Gromov-Wasserstein framework of Chowdhury and Need-
ham [18] to map it to a column vector a; in the data matrix A. In
step 3, we apply matrix sketching techniques, in particular, column
subset selection (CSS), to obtain an approximated matrix A, where
A~A=BxY.In step 4, we convert each column in Aintoa merge
tree (referred to as a sketched merge tree) using minimum spanning
trees (MST). Finally, in step 5, we return a set of basis merge trees
S by applying MST to each column b; in B. Each entry Y} ; in the

coefficient matrix Y defines the coefficient for basis tree .S; in approxi-
mating 7;. With the above pipeline, given a set of merge trees, we could
find a set of basis trees such that each input tree can be approximately
reconstructed from a linear combination of the basis trees.

3 A SIMPLE MOTIVATIONAL EXAMPLE

Before we dive into the technical details of our approach, we give a
motivational example. A time-varying scalar field is generated as a
mixture of 2D Gaussian functions that translate and rotate on the plane.
We sample 12 scalar fields { fo, . . ., f11} across consecutive time steps,
referred to as the Rotating Gaussian dataset, which gives rise to a set
of merge trees 7 = {To,...,T11}, as shown in Fig. 2. Each merge
tree T; is computed from — f;; thus, its leaves correspond to the local
maxima (red), internal nodes are saddles (white), and the root is the
global minimum (blue).

0246810 0246810

01

0 0
10 L)
00 05 10
0
20 X
1
0 2 4 6 8 10
POE" _ Yixn
40 4 7
50
- .
AN
N\
0 60 60 “

Adxn Agun Baxk
Fig. 3: Rotating Gaussian: Visualizing data matrices associated with the
sketching, and the coefficient matrix.

We now apply matrix sketching to 7 using our pipeline described
in Fig. 1. Since the dataset is quite simple, a couple of basis trees
are sufficient to obtain very good sketching results. Using k = 2, we
employ Iterative Feature Selection (IFS) — a type of column subset
selection algorithm — from the matrix sketching toolbox. The algorithm
produces a set of two basis trees, S = {74, T% }, which are highlighted
with green boxes together with their corresponding scalar fields in Fig. 2.
The topological structures of these two basis trees are noticeably distinct
among the input trees. They clearly serve as good representatives of
the entire set 7 and capture the structural variations.

We further visualize the data matrix A, A, B, and highlight the coef-
ficient matrix Y in Fig. 3 (cf. the gray box in Fig. 1). Y shows that each
input tree (column) is well represented (with high coefficient) by one of
the two basis trees. In particular, columns in the coefficient matrix with
high (yellow or light green) coefficients (w.r.t. the given basis) may be

grouped together, forming two clusters {To, 73, T4, T5, Ts, T10, T11}
and {11, T>,T7,Ts, To} whose elements look structurally similar.

4 RELATED WORK

Comparing merge trees. Merge trees record the connectivity among
the sublevel sets of scalar fields (e.g., [6,14]). They are rooted in Morse
theory [52], which characterizes scalar field data by the topological
changes in its sublevel sets at isolated critical points. A number of
recent works focus on comparing merge trees and their variants (e.g., [6,
31,57,60,67,68]); see [72] for a survey. Recently, Pont et al. proposed
a Wasserstein distance between merge trees [57] that equals to the
L?-Wasserstein distance between persistence diagrams. Wetzels et
al. proposed variants of edit distances [67, 68] that are independent
from branch decomposition trees.

In this paper, we treat merge trees as measure networks and introduce
a Gromov-Wasserstein (GW) distance between merge trees based on
optimal transport (Sec. 5). See Appendix E for a comparison with the
Wasserstein distance [57]. Different from previous distances between
merge trees, the GW distance is easy and efficient to compute, and
provides explicit structural correspondences between the trees (Sec. 6).
Our main focus is to use the GW distance to obtain alignments and vec-
tor representations of merge trees that interface with matrix sketching.
Gromov-Wasserstein distances. Gromov introduced Gromov-
Hausdorff (GH) distances [34] while presenting a systematic treat-
ment of metric invariants for Riemannian manifolds. GH distances
can be employed as a tool for shape matching and comparison
(e.g., [11,45,46,49,50]), where shapes are treated as metric spaces,
and two shapes are considered equal if they are isometric. Memoli [47]
modified the formulation of GH distances by introducing a relaxed
notion of proximity between objects, thus generalizing GH distances to
the notion of Gromov-Wasserstein (GW) distances for practical consid-
erations. Since then, GW distances have had a number of variants based
on optimal transport [62,63] and measure-preserving mappings [48].
Apart from theoretical explorations [47,61], GW distances have been
utilized in the study of graphs and networks [38,70,71], machine learn-
ing [12,28], and word embeddings [4]. Recently, Memoli et al. [51]
considered the problem of approximating metric spaces using GW dis-
tance. Their goal was to approximate a (single) metric measure space
modeling the underlying data by a smaller metric measure space. The
work presented in this paper instead focuses on approximating a large
set of merge trees — modeled as a set of metric measure networks — with
a much smaller set of merge trees.
Aligning and averaging graphs. Graph alignment or graph matching
is a key ingredient in performing comparisons and statistical analysis
on the space of graphs (e.g., [27,35]). It is often needed to establish
node correspondences between graphs of different sizes. Edit distances
have been used to align contour trees [43]. The approaches that are
most relevant here are the ones based on the GW distances [18, 55],
which employ probabilistic matching (“soft matching”) of nodes. Infor-
mation in a graph can be captured by a symmetric positive semidefinite
matrix that encodes distances or similarities between pairs of nodes.
Dryden et al. [25] described a way to perform statistical analysis and
to compute the mean of such matrices. Agueh et al. [3] considered
barycenters of several probability measures, whereas Cuturi et al. [20]
and Benamou et al. [7] developed efficient algorithms to compute such
barycenters. Peyre et al. [S5] combined these ideas with the notion
of GW distances [47] to develop GW averaging of distance/similarity
matrices. Chowdhury and Needham [18] built upon the work in [55]
and provided a GW framework to compute a Frechét mean among these
matrices using measure couplings. In this paper, we utilize the GW
framework [18] for probabilistic matching among merge trees.
Vectorizing topological descriptors. A number of recent works trans-
form topological descriptors from data into feature vectors to be used
as input to machine learning models; see [39] for a survey. A primary
focus is on vectorizing persistence diagrams. Adams et al. introduced
persistence images [2] that transform persistence diagrams into 2D im-
ages for classification tasks. Carriere et al. [16] used mappings between
points in persistence diagrams to construct vector representations. A
neural network layer was also used to embed persistence diagrams in

vector spaces [15].

Our framework generates vectorized representations of merge trees

using optimal transport to be interfaced with matrix sketching. Differ-
ent from previous work, the vectorized merge trees preserve structural
correspondences and there exist explicit mappings between pairs of
merge trees. In addition, we can reconstruct input merge trees from
basis trees, that is, we can reverse engineer merge trees from their vec-
tor representations. A number of previous works also utilize the latent
representations of inputs from neuron networks as high-dimensional
vector representations. However, these approaches often require exten-
sive training and often do not generalize well across diverse datasets.
In comparison, our approach is generalizable and does not require
training.
Matrix sketching. Many matrix sketching techniques [56, 69] build
upon linear algebra and vector sketching. For simplicity, we formulate
the problem as follows: Given a d x N matrix A, we would like to
approximate A using fewer columns, as a d X k matrix B such that
A and B are considered to be close with respect to some problem
of interest. Basic approaches for matrix sketching include truncated
singular value decomposition (SVD), column or row sampling [22,23],
random projection [59], and frequent directions [33,41]; see [56,69]
for surveys.

The column sampling approach carefully chooses a subset of the
columns of A proportional to their importance, where the importance
is determined by the squared norm (e.g., [22]) or the (approximated)
leverage scores (e.g., [23]). The random projection approach takes
advantage of the Johnson-Lindenstrauss (JL) Lemma [40] to create an
N X k linear projection matrix S (e.g., [59]), where B = AS. The
frequent directions approach [33,41] focuses on replicating properties
of the SVD. The algorithm processes each column of A at a time while
maintaining the best rank-k approximation as the sketch.

5 TECHNICAL BACKGROUND

We begin by reviewing the notion of a merge tree that arises from a
scalar field. We then introduce the technical background needed to
vectorize a merge tree as a column vector in the data matrix.

EW -

Fig. 4: An example of a merge tree from a height function. From left to
right: 2D scalar field visualization, a merge tree embedded in the graph
of the scalar field, and an abstract visualization of a merge tree as a
rooted tree equipped with a height function.

Merge trees. Let f : Ml — R be a scalar field defined on the domain
of interest M, where M is a subset of R? in our context. Merge trees
capture the connectivity among the sublevel sets of f, i.e., M, =
f~1(—o0, a). Two points =,y € M are equivalent, denoted by = ~ y,
if f(z) = f(y) = a, and x and y belong to the same connected
component of a sublevel set M. The merge tree, T(M, f) = M/~,
is the quotient space obtained by gluing together points in M that are
equivalent under the relation ~.

To construct a merge tree, we sweep the function value a from —oo
to oo, and create a new branch originating at a leaf node for each
local minimum of f. As a increases, such a branch is extended as its
corresponding component in M, grows until it merges with another
branch at a saddle point. If M is connected, all branches eventually
merge into a single component at the global maximum of f, which
corresponds to the root of the tree. For a given merge tree, leaves,
internal nodes, and root node represent the minima, merging saddles,
and global maximum of f, respectively. Fig. 4 displays an example.
Abstractly, a merge tree T is a rooted tree equipped with a scalar
function defined on its node set, f : V — R.

Gromov-Wasserstein distance for measure networks. Our frame-
work utilizes tools from optimal transport, specifically, the GW distance

between measure networks. The GW distance was proposed by Mem-
oli [46,47] for metric measure spaces. Peyre et al. [55] introduced the
notion of a measure network and defined the GW distance between
such networks. The key idea is to find a probabilistic matching between
a pair of networks by searching over the convex set of couplings of the
probability measures defined on the networks.

In our context, a finite merge tree 7" can be represented as a measure
network using a triple (V, p, W), where V is the set of n nodes, p is
a probability measure on V', and W is an n X n matrix capturing the
relations between pairs of nodes. For our experiments, p is taken to be
uniform, that is, p = %1,1, where 1,, = (1,1,...,1)7 € R". W may
encode adjacency or shortest path relations (see Sec. 6).

Let T1(Vi,p1, W1) and T>(Va, p2, W2) be a pair of merge trees
with n1 and n2 nodes, respectively. Let [n] denote the set {1,2,...,n}.
Vi = {xi}icin,) and Va = {y;}jcin,)- A coupling between probabil-
ity measures p; and p» is a joint probability measure on Vi x V2 whose
marginals agree with p; and p». That is, a coupling is represented as
an n1 X ng non-negative matrix C' such that each row sums up to 1/n
and each column sums up to 1/ns. The distortion of a coupling C with
an arbitrary loss function L is defined as [55]

>

i,k€[n1],j,1€[n2]

£(0) = LW (i, k), Wa(3,1))Ci,iCry. - (1)

Let C = C(p1, p2) denote the collection of all couplings between p;
and po. The Gromov-Wasserstein discrepancy [55] is defined as

D(C) = glégg(C))

In this paper, we consider the quadratic loss function L(a,b) =
%|a — b|. The Gromov-Wasserstein distance [18,47,55] dew between
Ty and T5 is defined as

daw (T1,T3)

1 .
=zmin >
i,k€[n1],j,l€[n2]

(Wi (i, k) — Wa(4,1)[*Ci ; Cri. (3)

It follows from the work of Sturm [61] that such minimizers always

exist and are referred to as optimal couplings.
0.12
0.10
0.08
0.06
0.04
0.02
éﬂj ‘ 0.00

012345
Fig. 5: An optimal coupling between two merge trees 71 and T>. The
coupling matrix is visualized in (A): yellow means high and dark blue
means low probability. Couplings between the Fréchet mean T with Ty
and Ty are shown in (B) and (C), respectively.

012345867

We give a simple example involving a pair of merge trees in Fig. 5
(top). T1 and 7% contain 8 and 6 nodes, respectively, where nodes are

labeled starting with a 0 index. The optimal coupling C' is shown below
and visualized in Fig. 5 (A):

r0.125 0 0 0 0 0 7
0 0.083 0 0.042 0 0
0.042 0.083 0 0 0 0

C— 0 0 0.042 0 0.042 0.042
- 0 0 0.125 0 0 0
0 0 0 0.125 0 0
0 0 0 0 0.125 0

L 0 0 0 0 0 0.125]

C'is an 8 x 6 matrix, and it shows, for instance, that node 0 in T} is
matched to node 0 in 7% with the highest probability. Node 2 in 77 is
matched probabilistically with both node 0 and node 1 in 75%.
Alignment and blowup [18]. Given a pair of merge trees 17 =
(Vi,p1,W1) and T> = (Va, p2, W2) with n1 and n2 nodes, respec-
tively, a coupling C' € C(p1, p2) can be used to align their nodes. In
order to do this, we will need to increase the size of 7% and 715 appro-
priately into their respective blowup trees T; and Ty, such that T and
T4 contain the same n number of nodes (where n1,n2 < n).

Roughly speaking, let « be a node in 71, and let n, be the number
of nodes in 75 that have a nonzero coupling probability with z. The
blowup tree T = (VY p}, W7) is created by making n., copies of node
x for each node in 77, generating a new node set V. The probability
distribution p} and the weight matrix W/ are updated from p; and W,
accordingly. Similarly, we can construct the blowup Ty = (V3, p5, W3)
of T». An optimal coupling C between p; and p2 expands naturally to a
coupling C between p} and p5. After taking appropriate blowups, C’
is now an n X n matrix which can be used to align the nodes of the two
blowup trees. With a bijective node alignment, we can permute C” to
be a diagonal matrix whose marginals agree with p/ and p’ respectively.
Since C’ is a diagonal matrix, we have pi = py = diag(C"). Finally,
C’ can be binarized to be an n X n permutation matrix (e.g., it has
1 where C’ > 0, and 0 elsewhere). The GW distance is given by
a formulation equivalent to Eqn. (3) based on an optimal coupling,
following [18, Definition 2]:

! ! 1 !y . Ly . / . ! .
dow (T{,T3) = 5 > _IWi(i,5) = Wa(i,)P (DpA (). (4)
0,J

Fréchet mean. Given a collection of merge trees 7" = {71,...,Tn},
a Fréchet mean T of T is a minimizer of the functional F'(H,T) =

~ Z 1 daw (T3, H) over the space N of measure networks [18],
T-Ir{%—ZdGW T;, H). 5)

Chowdhury and Needham [18] defined the directional derivative and
the gradient of the functional F'(H, 7") at H and provided a gradient de-
scent algorithm to compute the Fréchet mean. Their iterative optimiza-
tion begins with an initial guess Hy of the Fréchet mean. At the k" iter-
ation, there is a two-step process: each 77 is first blown up and aligned
to the current Fréchet mean, Hy; then Hy, is updated using the gradient
of the functional F'(Hy,T) at Hy. Such a two-step process is repeated
until convergence where the gradient vanishes. For the complete algo-
rithmic and implementational details, see [18]. If T = (V,p, W) is
the Fréchet mean, then we have W (i, j) = & SN Wi,), where
W, is the weight matrix obtained by blowing up and aligning T}, € T
to T. That is, when all trees in 7 are blown up and aligned to T, the
weight matrix of T is given by a simple elementwise average of the
weight matrices of the merge trees.

In the example shown in Fig. 5 (bottom), we compute the Fréchet
mean T of T and T5, which has 12 nodes. We align both 77 and T3
to 7" via their blowup trees. This alignment gives rise to a coupling
matrix between T" and T (of size 12 x 8) in Fig. 5 (B), and a coupling
matrix between 7" and 1 (of size 12 x 6) in Fig. 5 (C), respectively. As
shown in Fig. 5, root node 0 of 7" is matched probabilistically with root

node 0 of T and root node 0 of T,. Nodes 2 and 7 of T are matched
probabilistically with node 1 in 7% . Now both 77 and 7% are blown up
to be 77 and T%, each with 12 nodes, and can be vectorized into column
vectors of the same size.

6 METHODS

Given a set 7 of N merge trees as input, our goal is to find a basis set S
with k < N merge trees such that each tree in 7 can be approximately
reconstructed from a linear combination of merge trees in S. We
propose to combine the GW framework [18] with techniques from
matrix sketching to achieve this goal. We detail our pipeline to compute
S, as illustrated in Fig. 1.

Step 1: Representing merge trees as measure networks. The first
step is to represent merge trees as measure networks, as described
in Sec. 5. Each merge tree T € T can be represented using a triple
(V,p, W). In this paper, we define p as a uniform distribution on V,
and W as a shortest path distance matrix.

Recall that each node x in a merge tree is associated with a scalar
value f(z). For a pair of nodes z,z’ € V, if they are adjacent, we
define W(z,z') = |f(z) — f(z')], i.e., their absolute difference in
function value; otherwise, W (z, z) is the shortest path distance be-
tween them in 7". By construction, the shortest path between two nodes
goes through their lowest common ancestor in 7". The node set of a
merge tree is equipped with a function f; therefore, we define W in
such a way to encode information from f.

Step 2: Merge tree vectorization via alignment to the Fréchet mean.
The second step is to convert each merge tree into a column vector of
the same size via blowup and alignment to the Fréchet mean.

Having represented each merge tree as a measure network, we can
use the GW framework to compute a Fréchet mean of 7, denoted as
T = (V,p,W). Let n = |V|. In theory, n may become as large
as Hivzl |Vi]. In practice, n is chosen to be much smaller. In our
experiment, we choose 7 to be a small constant factor (e.g., 2 or 3) times
the size of the largest input tree. The optimal coupling C between T'
and 7Tj is an n X n; matrix with at least » nonzero entries. If the number
of nonzero entries in each row is greater than 1, we keep only the largest
value. That is, if a node of 7" has a nonzero probability of coupling
with more than one node of I', we consider the mapping with only
the highest probability, so that each coupling matrix C' has exactly n
nonzero entries. We then blow up each T to obtain T} = (V' p', W'),
and align T with T}. The above procedure ensures that each blowup
tree 77 has exactly n nodes, and the binarized coupling matrix C;
between T and 7} induces a node matching between them.

We can now vectorize (i.e., flatten) each W/ (an n x n matrix) to

form a column vector a; € R? of matrix A (where d = n?), as illus-
trated in Fig. 1 (step 2). In practice, d = (n + 1)n/2 as we store only
the upper triangular matrix. Each a; is a vector representation of the
input tree 7T; w.r.t. the Fréchet mean 7. Different from previous vec-
torization techniques, this process preserves (interpretable) structural
correspondences between the vector and the tree.
Step 3: Merge tree sketching via matrix sketching. The third step is
to sketch merge trees by applying matrix sketching to the data matrix
A, as illustrated in Fig. 1 (step 3). By construction, A is a d x N matrix
whose column vectors a; are vector representations of 7;. We apply
matrix sketching techniques to approximate A by A=BxY.In
our experiments, we use two linear sketching techniques from column
subset selection (CSS). See Appendix B for implementation details.

Using CSS, the basis set is formed by sampling k£ columns of A.
Let B denote the matrix formed by k& columns of A and let II = BB™
denote the projection onto the k-dimensional space spanned by the
columns of B. The goal of CSS is to find B such that || A — IIA|| ¢ is
minimized. We experiment with two variants of CSS.

In the first variant of CSS, referred to as Length Squared Sampling
(LSS), we sample (without replacement) columns of A with proba-
bilities g; proportional to the square of their Euclidean norms, i.e.,
¢ = ||a:||3/||A||%. We modify the algorithm slightly such that before
selecting a new column, we factor out the effects from columns that are
already chosen, making the chosen basis as orthogonal as possible.

In the second variant of CSS, referred to as the Iterative Feature
Selection (IFS), we use the algorithm proposed by Ordozgoiti et al. [53].
Instead of selecting columns sequentially as in LSS, IFS starts with a
random subset of k& columns. Then each selected column is either kept
or replaced with another column, based on the residual after the other
selected columns are factored out simultaneously.

Step 4: Reconstructing sketched merge trees. For the fourth step,
we convert each column in A as a sketched merge tree. Let A= By,
where matrices B and Y are obtained using CSS. Let @ = a; denote
the 5" column of A. We reshape @ as an n X n weight matrix W',
We then obtain a tree structure 7” from W’ by computing its minimal
spanning tree (MST). In particular, we treat W’ asa pair-wise distance
matrix, and the MST constructed from W' connects all the nodes and
minimizes the sum of edge weights.

Step 5: Returning basis trees. Finally, we return a set of basis merge
trees S using information encoded in the matrix B. Using CSS, each
column b; of B corresponds directly to a column in A; therefore, the
set S is trivially formed by the corresponding merge trees from 7.
Error analysis. For each experiment, we compute the global sketch
error € = || A — A||%, as well as column-wise sketch error e; = ||a; —

~ N .
@il|3, where e = 3" | ¢;. By construction, ¢; < e. For merge trees,

we measure the GW distance between each tree T} and its sketched
version T3, that is 7; = daw (T3, 1), referred to as the column-wise

GW loss. The global GW loss is defined to be 7 = vazl 7;. For

theoretical considerations, see discussions in Appendix A.

7 EXPERIMENTAL RESULTS

We demonstrate the applications of our sketching framework with
merge trees that arise from three 2D and one 3D time-varying datasets
from scientific simulations. The key takeaway is that, by applying
matrix sketching, a large set 7 of merge trees is replaced by a much
smaller basis set S such that trees in 7 are well approximated by trees
in S. Elements in the basis set S serve as good representatives that cap-
ture structural variations among the time instances, thus reflecting the
“modes” of the underlying physical phenomena (Sec. 7.1 and Sec. 7.2).
In addition, our framework also uncovers cyclical behavior of time-
varying datasets that exhibit periodicity (Sec. 7.3 and Appendix C.1).
See Appendix C for additional results and runtime analysis.

In practice, we simplify the scalar fields based on persistence before
computing the merge trees. See Appendix B for details.

71

Two of our datasets come from numerical simulations available on-
line [1]. The first dataset, referred to as the Heated Cylinder with
Boussinesq Approximation (Heated Cylinder in short), comes from
the simulation of a 2D flow generated by a heated cylinder using the
Boussinesq approximation [36, 58]. The dataset shows a time-varying
turbulent plume containing numerous small vortices. We convert each
time instance of the flow (a vector field) into a scalar field using the
magnitude of its vertical (y) velocity component. We generate a set of
split trees (i.e., the merge tree surrounding local maxima) from these
scalar fields based on 31 time steps, which correspond to steps 600-630
from the original 2000 time steps. This set captures the evolution of
small vortices over time.

Parameter. To choose the appropriate k£ number of basis trees for this
dataset, we use the “elbow method” to determine k, similar to cluster
analysis. We plot the global GW loss and global sketch error as a
function of k, and pick the elbow of the curve as the k to use. As shown
in Fig. 6, k is chosen to be three for the Heated Cylinder dataset. In
subsequent sections, element-wise GW losses and sketch errors also
reaffirm this choice (cf., Fig. 8).

Given 31 merge trees T = {To, . .., T30} from the Heated Cylinder
dataset, we apply two types of column subset selection (CSS) methods,
namely IFS and LSS to obtain a set of basis trees S and reconstruct the
sketched trees. Since we are using CSS, the basis trees are elements
from the original input. We first demonstrate that the basis trees capture
structural variations among the time-varying input. We then investigate

Heated Cylinder Dataset

GW loss Sketch error

175 —CSSIFS 250
—CSSLSS

—CSSIFS
—CSSLSS

200

Sketch error

2 3 4 s 6 7 8 9 10 2 3 4 s 6 7 8 9 10

Fig. 6: Heated Cylinc?er: Global GW losses and globél sketch errors for
varying k, the number of basis trees, using IFS and LSS.

@ :

20 °

®F

-

e

*
]
© f%@ Y

Fig. 7: Sketching the Heated Cylinder dataset with three basis trees
using IFS: (A) basis trees where orange circles highlight topological
changes w.r.t. nearby basis trees, (B) scalar fields that give rise to these
basis trees. Areas with critical points appearances/disappearances are
shown with zoomed views in (C).

the coefficient matrix and show that with only three basis trees, we can
obtain sketched trees with small errors.

Basis trees as representatives with IFS. We first illustrate our sketch-
ing results using IFS. Based on our error analysis (Fig. 6), three basis
trees appear to be the appropriate choice that strikes a balance between
data summarization and structural preservation.

As shown in Fig. 7(A), IFS produces three basis trees, S =
{Ts,T12,T20}, which capture noticeable structural variations among
the input merge trees. Specifically, moving from 73 to 712 and 772
to T»0, a saddle-maxima pair appears in the merge trees, respectively
(highlighted by orange circles). These changes in the basis trees reflect
the appearances of critical points in the domain of the time-varying
fields; see Fig. 7(B). In Fig. 7(C), we highlight (with orange balls) the
appearances of these critical points in the domain. That is, from 7% to
T2, critical points « and y appear in the scalar fields, whereas from
T2 to Tho, critical points u and v appear. Therefore, the three basis
trees capture structural changes in the time-varying data, thus reflecting
the “modes” of the underlying phenomena. Such “modes” are also
confirmed with the coefficient matrix (see Fig. 8), which is a byproduct
of the sketching process.

Coefficient matrices with IFS. The coefficient matrix, column-wise

sketch error, and GW loss are used to guide our investigation into
the quality of individual sketched trees, see Fig. 8. Trees with small
GW losses or sketch errors are considered well sketched w.r.t. the
chosen basis. The coefficient matrix in Fig. 8(B) contains a number
of yellow or light green blocks, indicating that consecutive input trees
share similar coefficients w.r.t. the chosen basis; therefore, they are
grouped together into three clusters, reflecting the three modes of the
underlying phenomena. Such a blocked structure indicates that the
chosen basis trees are good representatives of the clusters.

In comparison, using just two basis trees (73 and 7%2) does not cap-
ture the structural variations as well as three basis trees. In Fig. 8(C),
we see a slight degradation in the blocked structure and thus the sketch-
ing quality using two basis trees. In particular, trees in the red area of
Fig. 8(D) (Ix to T14) are not well approximated due to a missing basis

tree.
B e

Sketch error

|
‘ilz E‘E
|

IFS: 2 basis trees 2 Basis Trees ©
GW loss
_ —— —

Sketch error

IFS: 3 basis trees

Fig. 8: Sketchlng the Heated Cylinder dataset with three (A-B) and two
(C-D) basis trees using IFS. (A, C) column-wise sketch error and GW
loss, (B, D) coefficient matrix. Orange boxes highlight basis trees.

LSS

Coefficient Matrix

Fig. 9: Heated Cylinder: Coefficient matrices and basis trees used to
sketch the dataset with three basis trees using LSS.

GW loss Sketch error

—CSSHFS 40000
o —CSSLSS

—CSSIFS

—CS5-LSS.

35000

30000

25000

20000

Sketch error

15000

20 10000

T N

Fig. 10: Corner Flow: Global GW losses and global sketch errors for
varying k, the number of basis trees, using IFS and LSS.

Sketching with LSS. Additionally, we include the sketching results
using LSS as an alternative strategy, again with three basis trees accord-
ing to the “elbow method” (Fig. 6). LSS gives basis trees 15, T10 and
T»7 in Fig. 9, which are similar to the ones obtained by IFS (Fig. 7).
In other words, for the Heated Cylinder dataset, variations in column
selection methods do not affect the quality of sketching results.

Fig. 11: Sketching the Corner Flows dataset with 15 basis trees with IFS: (Top) first 6 basis trees where orange circles highlight topological changes
w.r.t. near basis trees, (Bottom Left) scalar fields that give rise to these basis trees, areas with critical points appearances/disappearances are shown

with zoomed views in (Bottom Right).
7.2 Corner Flow Dataset

The second dataset, referred to as the Cylinder Flow Around Corners
(Corner Flow in short), arises from the simulation of a viscous 2D
flow around two cylinders [5,58]. The channel into which the fluid is
injected is bounded by solid walls. A vortex street is initially formed at
the lower left corner, which then evolves around the two corners of the
bounding walls. We generate a set of merge trees from the magnitude
of the velocity fields of 100 time instances, which correspond to steps
801-900 from the original 1500 time steps. This dataset describes the
formation of a one-sided vortex street on the upper right corner.

Parameter. Using the “elbow method”, we choose k = 15 (see Fig. 10).
Given a set of 100 merge trees, we first demonstrate that a set of 15
basis trees chosen with IFS gives sketched trees with a small error,
based on the coefficient matrices and error analysis.

Coefficient matrices with IFS. We first compare the coefficient ma-
trices generated using IFS, for £ = 10, 15, respectively. Compar-
ing Fig. 12(A) and (C), we see generally improved column-wise GW
loss and sketch error using 15 instead of 10 basis trees. Furthermore,
the coefficient matrix with 15 basis trees (B) contains better block struc-
tures than the one with 10 basis trees (D). In particular, using additional
basis trees improves upon the sketching results in regions enclosed by
red boxes in (D).

Basis trees as representatives. We thus report the sketching results
with 15 basis trees under IFS. The basis trees are selected with labels 3,
12, 21, 25, 28, 32, 36, 40, 48, 53, 60, 65, 74, 81, 92; see Fig. 12(B) and
the first 6 basis trees in Fig. 11(Top). Similar to the Heated Cylinder,
we observe noticeable structural changes among pairs of adjacent basis
trees, which lead to a partition of the input trees into clusters with
similar structures; see the block structure in Fig. 12(B). Thus the basis

@ GW loss

Sketch error

Coefficient matrix

© o
-

o © “ .. Sketcherror

IFS: 15 basis trees

12 20 2508 32 36 40 48 53 60 65 74 81 92

IFS: 10 basis trees

Py

o 20 &0 &

o

2

4 . N
5 Coefficient matrix
e

Fig. 12: Sketching the Corner Flow dataset with 15 (A, B) and 10 (C, D)
basis trees using IFS. (A, C) column-wise sketch error and GW loss, (B,
D) coefficient matrix. Orange boxes highlight basis trees. Red boxes in
(D) indicate trees that are better sketched with 15 basis trees.

trees serve as good cluster representatives, as they are roughly selected
one per block.

We highlight the structural changes among the first 6 adjacent basis
trees in Fig. 11 Top (green boxes). We further highlight critical points
involved in these structural changes in the domain (Fig. 11 Bottom Left)
with zoomed views in Fig. 11 (Bottom Right). For instance, moving
from T3 to T2, critical points and y appear while v and v disappear,
cf., Fig. 11 (Top) 75 and T2 and (Bottom Right) a — b, ¢ — d.

7.3 Flow Behind a Square Cylinder Dataset

We demonstrate the use of our method in distinguishing and summa-
rizing different types of flow behavior using a flow behind a square

| N m__—— —\
:BSW/ = N :95 _— oS \
“ - o ‘ A\
— W op—=_Ji s
Fig. 13: Sketching the Square Cylinder Flow dataset with IFS. Top shows
the coefficient matrix. Bottom shows instances of the scalar fields.

cylinder, referred to as the Square Cylinder Flow dataset. This
dataset is a direct numerical Navier Stokes simulation by Simone
Camarri and Maria-Vittoria Salvetti (University of Pisa), Marcelo
Buffoni (Politecnico of Torino), and Angelo Iollo (University of Bor-
deaux) [13]. We use a uniformly resampled version that has been pro-
vided by Tino Weinkauf (https://www.csc.kth.se/~weinkauf/
notes/squarecylinder.html) and used by von Funck et al. for
smoke visualizations [65]. The magnitude of the velocity field is avail-
able as a scalar field on a 192 x 64 x 48 grid over 101 time steps. We
consider a slice perpendicular to the square cylinder. We report the
sketching result by setting k£ = 10.

Observing different stages of flow evolution. As shown in the co-
efficient matrix in Fig. 13 (1st row), we observe four stages of the
vortex flow evolution. For the first 0 — 24 instances (stage 1), the
flow has not formed any visible vortices, and the topological structures
of the scalar fields appear to be relatively simple; as shown in Fig. 13
(2nd row) for instances 5 and 20. The sketching framework identifies
three basis trees in stage 1, corresponding to instances 0, 4 and 16,
which capture structural variations. In stage 2 for instances 25 — 51,
some vortices begin to form, and the merge trees generated from the
scalar fields exhibit significant structural changes; however, periodic
behaviors have not yet formed. During stage 3 from instances 52 — 73,
the vortices demonstrate shedding behavior, that is, the vortices from
both sides of the cylinder alternate and give rise to oscillating and thus
periodic patterns. In particular, we highlight instances 52, 59, 66, 73
in Fig. 13 (3rd and 4th rows), where the crest and trough of vortices
alternate at a fixed periodicity of ~ 7. For example, instance 52 is
mirror-symmetrical to instance 59, and nearly identical to instance
66. Afterward, in stage 4 (instances 85 — 100), the vortices become
significantly distorted and their periodic behaviors become less visible;
see instances 85 and 95 in Fig. 13 (5th row) for reference.

Observed periodicity. The stage that shows periodicity includes in-
stances 52 — 73. We show instances 52, 59, 66, and 73 that highlight
the periodic behavior in the coefficient matrix (Fig. 13 1st row), all of
which share high coefficients with the same basis. In addition, such
a periodicity is further validated by the GW distance matrix, see Ap-
pendix C for details. These results illustrate the ability of our framework
to simultaneously detect representatives (at an early stage) and capture
periodicities (at a later stage) of the flow.

7.4 lIsabel 3D Dataset

Our framework can be adapted to higher dimensional data. We demon-
strate the application to a 3D Isabel dataset simulating Hurricane Is-
abel [66]. We use time steps 2 — 5, 30 — 33, and 45 — 48 for
analysis, describing three key phases (i.e., formation, drift, landfall) of

the hurricane. This is the same set of time steps processed by Pont et
al. [57].

The underlying topology changes rapidly across this dataset.
In Fig. 14, we see the first two time steps of each phase of the hurricane:
between adjacent time steps, we see many differences between the
merge trees. For example, see the areas inside blue, cyan, and purple
circles, respectively. Across different hurricane phases, the difference
in the underlying topology is even more significant: the merge tree for
the time step 2, 30, and 45 has 22, 188, and 100 nodes, respectively.
Coefficient matrices. Using the prior knowledge that there are three
phases of the hurricane in this dataset, we naturally desire to use three
representatives to describe the overall topology. We apply our frame-
work by setting £ = 3. However, no time instances in the third phase
are selected as representatives; see Fig. 14 (top right). Using the IFS
strategy, we select time steps 2, 3, and 30 as representatives; using the
LSS strategy, we select time steps 4, 5, and 33 as representatives. Both
strategies select two time steps in the formation (first) phase and one
time step in the drift (second) phase. Our conjecture is that since the
number of topological features changes drastically during the formation
phase, our framework selects more than one instance in this phase as
the representatives to capture these drastic feature appearances.

Meanwhile, a representative is selected in the drift phase. Based on
the selected basis, time instances in the drift phase are clearly grouped
in the coefficient matrices using both CSS strategies (Fig. 14 top right),
regardless of minor differences in the branch structures (e.g., see the
cyan circles in Fig. 14).

However, our results do not imply that the GW distance fails to

detect different phases of the hurricane. Instead, in Fig. 14 (bottom
right), we can clearly see three block structures (in green squares)
from the pairwise GW distance matrix. Each block indicates similar
topological structures for all instances within, whereas the transition
of blocks along the diagonal of the pairwise distance matrix indicates
topological structure changes. In other words, using the GW distance,
we see that time steps 2 — 5 share similar topological structures, as
do time steps 30 — 33 and 45 — 48. The result matches the prior
knowledge on this dataset.
Takeaway. The GW distance is able to identify a subset of represen-
tatives for 3D volume data with complex topological changes. The
merge tree vectorization and sketching, however, is relatively sensitive
to drastic topological changes, and, thus, its performance depends on
the complexity of the data and the chosen number of basis.

8 DISCUSSION: ALTERNATIVE VECTORIZATION APPROACHES

Given the promising performance of vectorizing and sketching merge
trees using tools from optimal transport, we now discuss two alternative
approaches to vectorize scalar field data. We apply the same sketching
techniques (i.e., IFS and LSS) to the vectorized data and assess how
much the basis vectors capture the topological variations in the data.

The first approach is to vectorize a scalar field f directly by unrolling
its matrix representation into a vector. Suppose a scalar field f is
uniformly sampled on a regular grid and represented as a matrix. We
obtain a high-dimensional vector by unrolling the matrix in a row-major
order (i.e., concatenating the rows).

The second approach is to vectorize the persistence diagram of a
scalar field f (e.g., [2,29]). A persistence image [2] is a vector repre-
sentation of the persistent homology of f. We compute the persistence
image of f that captures its 0-dimensional superlevel set persistent
homology (i.e., behaviors of maxima and saddles). Since a persis-
tence image is a matrix, we again vectorize it by matrix unrolling in a
row-major order.

To keep all vectors of the same size, we fix the grid size of the scalar
field domain in the first approach and the resolution of the persistence
image in the second approach. We apply matrix sketching on the set
of vectors that arise from the Heated Cylinder dataset. The same level
of persistence simplification is applied for consistency. To sketch both
types of vectors, we define the sketch error as the sum of the squared
residuals between the original and its sketched version. We use the
“elbow method” on the sketch error plots to select the number of basis.

https://www.csc.kth.se/~weinkauf/notes/squarecylinder.html
https://www.csc.kth.se/~weinkauf/notes/squarecylinder.html

i

IFS

LSS

5 30 31 32 33 45 46 47 48

Fig. 14: Hurricane Isabel dataset. Left and middle: volume renderings and merge trees of the first two time steps of each phase of the hurricane.
Right: coefficient matrix using IFS and LSS with three basis (top) and the pairwise GW distance matrix (bottom).

IFS: 3 basis, vectorizing scalar fields

Fig. 15: Sketching the Heated Cylinder dataset using vectorized scalar
fields. Orange boxes highlight selected basis vectors.

Vectorizing scalar fields. Based on the error plot (see Appendix C), we
set k = 3. Using IFS, we select time steps 4, 16, and 27 as the basis;
see Fig. 15 (top). The selected basis vectors are oblivious to topological
changes in the data. In particular, merge trees at time steps 16 and 27
are almost indistinguishable (c.f., observable topological changes at
time step 25). In addition, we do not observe yellow or light green
blocks in the coefficient matrix, indicating the lack of clustering/modes
using these basis vectors. Furthermore, using LSS, we select time steps
0, 15, and 30 as the basis and observe that there are again no clear
block structures in the coefficient matrix; see Fig. 15 (bottom). In short,
representatives obtained by applying sketching to these scalar field
vectorizations do not capture topological variations in the data.

Vectorizing persistence images. To sketch dimension-0 persistence
images, we set k = 3 (Fig. 20 right). Using IFS and LSS, we observe
some noisy block structures in the coefficient matrices, indicating that
persistence images are partially successful in detecting modes in the
data (especially using LSS), see Fig. 16. We display the chosen basis
using LSS. These basis vectors also give rise to merge trees that are
topologically distinguishable (see 75, 115, and T>g). However, these
block structures are much noisier than those observed via the merge
tree vectorizations (c.f., Fig. 8), and contain poorly sketched sections
(enclosed by red boxes). We obtained similar results using dimension-
1 persistence images (due to duality [26, page 164]). In summary,

IFS: 3 basis, dim-0 persistence image
6

15 30

28

Fig. 16: Sketchiﬁg the Heated Cylino%r datasetmusing per§istence irﬁoages.
Orange boxes highlight selected basis vectors.

sketching persistence images produces results that are suboptimal, in
comparison with those obtained by sketching merge trees.

9 CONCLUSION

We present a framework to sketch merge trees. Given a set 7 of merge
trees of (possibly) different sizes, we compute a basis set of merge
trees S such that each tree in 7 can be approximately reconstructed
using S. Our framework can be used to identify a basis set, which
serves as a consensus set or a set of representatives that capture the
modes of the underlying data. Such a basis set also provides a compact
representation for downstream analysis. In addition, our framework
could recover cyclical phenomena for time-varying data. Our frame-
work demonstrates that, for the first time, matrix sketching could be
applied to topological descriptors. This work starts an exciting direc-
tion of vectorizing topological descriptors using optimal transport and
applying randomized linear algebra to these vector representations.

Our framework also has limitations. First, the computed Frechét
mean depends on the initialization due to the optimization process. Sec-
ond, the size of the blowup matrix may quickly become intractable [18]
with large merge trees. Our approach is flexible enough to be general-
ized to sketch other topological descriptors such as contour trees, Reeb
graphs, and Morse—Smale graphs (e.g., [17]), which is left for future
work.

ACKNOWLEDGMENTS

This work was partially funded by DOE DE-SC0021015 and NSF
11S-2145499. We thank Jeff Phillips for discussions involving column
subset selection, Benwei Shi for his implementation on length squared
sampling, and Ofer Neiman for sharing the code on low stretch spanning
trees.

REFERENCES

(1
(2]

(3]

(4]

(3]

(6]

(71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Computer graphics laboratory. https://cgl.ethz.ch/research/
visualization/data.php. 5

H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman,
S. Chepushtanova, E. Hanson, F. Motta, and L. Ziegelmeier. Persistence
images: A stable vector representation of persistent homology. The Journal
of Machine Learning Research, 18(1):218-252,2017. 3, 8

M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM
Journal on Mathematical Analysis, 43(2):904-924, 2011. 3

D. Alvarez-Melis and T. Jaakkola. Gromov-Wasserstein alignment of
word embedding spaces. Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 1881-1890, 2018. 3

I. Baeza Rojo and T. Giinther. Vector field topology of time-dependent
flows in a steady reference frame. IEEE Transactions on Visualization and
Computer Graphics, 26(1):280-290, 2020. 7

K. Beketayev, D. Yeliussizov, D. Morozov, G. Weber, and B. Hamann.
Measuring the distance between merge trees. Topological Methods in
Data Analysis and Visualization III: Theory, Algorithms, and Applications,
Mathematics and Visualization, pages 151-166, 2014. 3

J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré. Itera-
tive Bregman projections for regularized transportation problems. SIAM
Journal on Scientific Computing, 37(2):A1111-A1138, 2015. 3

A. Bhaskara, S. Lattanzi, S. Vassilvitskii, and M. Zadimoghaddam. Resid-
ual based sampling for online low rank approximation. /[EEE 60th Annual
Symposium on Foundations of Computer Science, pages 1596-1614, 2019.
2

C. Boutsidis and E. Gallopoulos. SVD based initialization: A head start for
nonnegative matrix factorization. Pattern Recognition, 41(4):1350-1362,
2008. 12

C. Boutsidis, M. W. Mahoney, and P. Drineas. An improved approximation
algorithm for the column subset selection problem. Proceedings of the 20th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 968-977,
2009. 12

A. M. Bronstein, M. M. Bronstein, and R. Kimmel. Efficient computa-
tion of isometry-invariant distances between surfaces. SIAM Journal on
Scientific Computing, 28(5):1812-1836, 2006. 3

C. Bunne, D. Alvarez-Melis, A. Krause, and S. Jegelka. Learning gener-
ative models across incomparable spaces. International Conference on
Machine Learning, pages 851-861, 2019. 3

S. Camarri, M.-V. Salvetti, M. Buffoni, and A. Iollo. Simulation of the
three-dimensional flow around a square cylinder between parallel walls at
moderate reynolds numbers. In XVII Congresso di Meccanica Teorica ed
Applicata, pages 11-15, 2005. 8

H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimen-
sions. Computational Geometry, 24(2):75-94, 2003. 3

M. Carriere, F. Chazal, Y. Ike, T. Lacombe, M. Royer, and Y. Umeda.
Perslay: A neural network layer for persistence diagrams and new graph
topological signatures. In S. Chiappa and R. Calandra, editors, Proceed-
ings of the Twenty Third International Conference on Artificial Intelligence
and Statistics, volume 108 of Proceedings of Machine Learning Research,
pages 2786-2796. PMLR, 26-28 Aug 2020. 3

M. Carriere, S. Y. Oudot, and M. Ovsjanikov. Stable topological signatures
for points on 3d shapes. Computer Graphics Forum, 34(5):1-12, 2015. 3
M. J. Catanzaro, J. M. Curry, B. T. Fasy, J. Lazovskis, G. Malen, H. Riess,
B. Wang, and M. Zabka. Moduli spaces of Morse functions for persistence.
Journal of Applied and Computational Topology, 4:353-385, 2020. 9

S. Chowdhury and T. Needham. Gromov-Wasserstein averaging in a
Riemannian framework. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages 842-843,
2020. 1,2,3,4,5,9,12,13

A. Cichocki and A.-H. Phan. Fast local algorithms for large scale nonnega-
tive matrix and tensor factorizations. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, 92(3):708-721,
2009. 15

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

(45]

M. Cuturi and A. Doucet. Fast computation of Wasserstein barycenters.
Proceedings of the 31st International Conference on Machine Learning,
PMLR, 32(2):685-693, 2014. 3

A. Deshpande and S. Vempala. Adaptive sampling and fast low-rank ma-
trix approximation. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 292-303, 2006. 12

P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo algorithms
for matrices II: Computing a low-rank approximation to a matrix. SIAM
Journal on Computing, 36:158-183, 2006. 3, 12

P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff. Fast
approximation of matrix coherence and statistical leverage. Journal of
Machine Learning Research, 13:3441-3472,2012. 3

P. Drineas and M. W. Mahoney. RandNLA: Randomized numerical linear
algebra. Communications of the ACM, 59(6):80-90, may 2016. 1

I. L. Dryden, A. Koloydenko, and D. Zhou. Non-Euclidean statistics for
covariance matrices, with applications to diffusion tensor imaging. Annals
of Applied Statistics, 3(3):1102-1123, 2009. 3

H. Edelsbrunner and J. Harer. Computational Topology: An Introduction.
American Mathematical Society, 2010. 9

F. Emmert-Streib, M. Dehmer, and Y. Shi. Fifty years of graph matching,
network alignment and network comparison. Information Sciences, 346—
347:180-197, 2016. 3

D. Ezuz, J. Solomon, V. G. Kim, and M. Ben-Chen. GWCNN: A metric
alignment layer for deep shape analysis. Computer Graphics Forum,
36:49-57,2017. 3

G. Favelier, N. Faraj, B. Summa, and J. Tierny. Persistence atlas for critical
point variability in ensembles. IEEE Transactions on Visualization and
Computer Graphics, 25(1):1152-1162, 2018. 8

C. Févotte and J. Idier. Algorithms for nonnegative matrix factorization
with the B-divergence. Neural Computation, 23(9):2421-2456, 2011. 15
E. Gasparovic, E. Munch, S. Oudot, K. Turner, B. Wang, and
Y. Wang. Intrinsic interleaving distance for merge trees. arXiv preprint
arXiv:1908.00063, 2019. 3

S. Gerber, P.-T. Bremer, V. Pascucci, and R. Whitaker. Visual exploration
of high dimensional scalar functions. IEEE Transactions on Visualization
and Computer Graphics, 16:1271-1280, 2010. 12

M. Ghashami, E. Liberty, J. M. Phillips, and D. P. Woodruff. Frequent
directions: Simple and deterministic matrix sketching. STAM Journal of
Computing, 45(5):1762-1792, 2016. 3

M. Gromov. Metric Structures for Riemannian and Non-Riemannian
Spaces, volume 152 of Progress in mathematics. Birkhduser, Boston,
USA, 1999. 3

S. Gu and T. Milenkovi¢. Data-driven network alignment. PLoS ONE,
15(7):¢0234978, 2020. 3

T. Gunther, M. Gross, and H. Theisel. Generic objective vortices for flow
visualization. ACM Transactions on Graphics, 36(4):141:1-141:11, 2017.
5

C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani,
G. Scheuermann, H. Hagen, and C. Garth. A survey of topology-based
methods in visualization. Computer Graphics Forum, 35(3):643-667,
2016. 1

R. Hendrikson. Using Gromov-Wasserstein distance to explore sets of
networks. Master’s thesis, University of Tartu, 2016. 3

F. Hensel, M. Moor, and B. Rieck. A survey of topological machine
learning methods. Frontiers in Artificial Intelligence, 4, 2021. 3

W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings
into a Hilbert space. Contemporary Mathematics, 26:189-206, 1984. 3
E. Liberty. Simple and deterministic matrix sketching. Proceedings of the
19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 581-588, 2013. 2, 3

S. Liu, D. Maljovec, B. Wang, P.-T. Bremer, and V. Pascucci. Visualizing
high-dimensional data: Advances in the past decade. IEEE Transactions
on Visualization and Computer Graphics, 23(3):1249-1268, 2017. 1
A.-P. Lohfink, F. Wetzels, J. Lukasczyk, G. H. Weber, and C. Garth.
Fuzzy contour trees: alignment and joint layout of multiple contour trees.
Computer Graphics Forum (CGF), 39(3):343-355, 2020. 3

M. W. Mahone and P. Drineas. Structural properties underlying high-
quality randomized numerical linear algebra algorithms. In P. Bithlmann,
P. Drineas, M. Kane, and M. v. d. Laan, editors, Handbook of Big Data,
pages 137-154. Chapman and Hall, 2016. 1, 12

F. Mémoli. Estimation of distance functions and geodesics and its use for
shape comparison and alignment: theoretical and computational results.
PhD thesis, University of Minnesota, 2005. 3

https://cgl.ethz.ch/research/visualization/data.php
https://cgl.ethz.ch/research/visualization/data.php

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68

[69]

[70]

F. Mémoli. On the use of Gromov-Hausdorff distances for shape compar-
ison. Eurographics Symposium on Point-Based Graphics, pages 81-90,
2007. 3,4

F. Mémoli. Gromov-Wasserstein distances and the metric approach to
object matching. Foundations of Computational Mathematics, 11(4):417—
487,2011. 1,3, 4

F. Mémoli and T. Needham. Gromov-Monge quasi-metrics and distance
distributions. arXiv preprint arXiv:1810.09646, 2020. 3

F. Mémoli and G. Sapiro. Comparing point clouds. Proceedings of
the Eurographics/ACM SIGGRAPH Symposiumon Geometry Processing,
pages 3240, 2004. 3

F. Mémoli and G. Sapiro. A theoretical and computational framework
for isometry invariant recognition of point cloud data. Foundations of
Computational Mathematics, 5:313-347, 2005. 3

F. Memoli, A. Sidiropoulos, and K. Singhal. Sketching and clustering
metric measure spaces. arXiv preprint arXiv:1801.00551, 2018. 3

J. Milnor. Morse Theory. Princeton University Press, New Jersey, 1963. 3
B. Ordozgoiti, S. G. Canaval, and A. Mozo. A fast iterative algorithm
for improved unsupervised feature selection. IEEE 16th International
Conference on Data Mining, pages 390-399, 2016. 5

K. Pearson. LIII. On lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 2(11):559-572, 1901. 1

G. Peyré, M. Cuturi, and J. Solomon. Gromov-Wasserstein averaging
of kernel and distance matrices. Proceedings of the 33rd International
Conference on Machine Learning, PMLR, 48:2664-2672, 2016. 1, 3,4
J. M. Phillips. Coresets and sketches. In Handbook of Discrete and
Computational Geometry, chapter 48. CRC Press, 3rd edition, 2016. 1, 3
M. Pont, J. Vidal, J. Delon, and J. Tierny. Wasserstein distances, geodesics
and barycenters of merge trees. /[EEE Transactions on Visualization and
Computer Graphics, 28(1):291-301, 2022. 3, 8, 12, 15

S. Popinet. Free computational fluid dynamics. ClusterWorld, 2(6), 2004.
5,7

T. Sarlés. Improved approximation algorithms for large matrices via
random projections. Proceedings of 47th IEEE Symposium on Foundations
of Computer Science, pages 143-152, 2006. 3

R. Sridharamurthy, T. B. Masood, A. Kamakshidasan, and V. Natarajan.
Edit distance between merge trees. IEEE Transactions on Visualization
and Computer Graphics, 26(1):1518-1531, 2020. 3, 13

K.-T. Sturm. The space of spaces: curvature bounds and gradient flows
on the space of metric measure spaces. arXiv preprint arXiv:1208.0434,
2012. 3,4

V. Titouan, N. Courty, R. Tavenard, and R. Flamary. Optimal transport for
structured data with application on graphs. International Conference on
Machine Learning, pages 6275-6284, 2019. 3

V. Titouan, R. Flamary, N. Courty, R. Tavenard, and L. Chapel. Sliced
Gromov-Wasserstein. Advances in Neural Information Processing Systems,
pages 14726-14736, 2019. 3

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cour-
napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der
Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson,
E. Jones, R. Kern, E. Larson, C. J. Carey, 1. Polat, Y. Feng, E. W. Moore,
J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A.
Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa,
P. van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17:261-
272,2020. 16

W. Von Funck, T. Weinkauf, H. Theisel, and H.-P. Seidel. Smoke surfaces:
An interactive flow visualization technique inspired by real-world flow
experiments. /[EEE Transactions on Visualization and Computer Graphics,
14(6):1396-1403, 2008. 8

W. Wang, C. Bruyere, B. Kuo, and T. Scheitlin. IEEE SciVis Contest.
https://sciviscontest.ieeevis.org/2004/,2004. 8

F. Wetzels and C. Garth. A deformation-based edit distance for merge
trees. In 2022 Topological Data Analysis and Visualization (TopoInVis),
pages 29-38, 2022. 3

F. Wetzels, H. Leitte, and C. Garth. Branch decomposition-independent
edit distances for merge trees. Computer Graphics Forum, 41(3):367-378,
2022. 3,15

D. P. Woodruff. Sketching as a tool for numerical linear algebra. Founda-
tions and Trends in Theoretical Computer Science, 10(1-2):1-157, 2014.
1,3

H. Xu, D. Luo, and L. Carin. Scalable Gromov-Wasserstein learning

[71]

[72]

for graph partitioning and matching. Advances in Neural Information
Processing Systems, pages 3046-3056, 2019. 3

H. Xu, D. Luo, H. Zha, and L. Carin. Gromov-Wasserstein learning
for graph matching and node embedding. International Conference on
Machine Learning, pages 6932—-6941, 2019. 3

L. Yan, T. B. Masood, R. Sridharamurthy, F. Rasheed, V. Natarajan, 1. Hotz,
and B. Wang. Scalar field comparison with topological descriptors: Prop-
erties and applications for scientific visualization. Computer Graphics
Forum (CGF), 40(3):599-633, 2021. 3

https://sciviscontest.ieeevis.org/2004/

A THEORETICAL CONSIDERATIONS

We discuss some theoretical considerations in sketching merge trees.
In the first two steps of our framework, we represent merge trees as
metric measure networks and vectorize them via blow-up and alignment
to a Fréchet Mean using the GW framework [18]. Each merge tree
T = (V,p,W) € T is mapped to a column vector a in matrix A,
where W captures the shortest path distances using function value
differences as weights. The computation of the Fréchet mean 7' is an
optimization process, but the blow-up of 7" and its alignment to 7" does
not change the underlying distances between the tree nodes, which are
encoded in W. Therefore, reshaping the column vector a back to a
pairwise distance matrix and computing its corresponding MST fully
recover the original input merge tree.

In the third step, we sketch the matrix A using CSS. It is also
possible to apply another matrix sketching technique, namely, non-
negative matrix factorization (NMF). Both CSS and NMF (albeit with
different constraints) aim to obtain an approximation A=BY of A
that minimizes the error € = ||A — A| 7. Let A denote the (unknown)
best rank-k approximation of A. In the case of CSS, the theoretical
upper bound is given as a multiplicative error of the form e < ey - || A —
Ap||F, where €, depends on the choice of k [10,21], or it is given as
an additive error € < ||A — Ak||F + €k, 4, where €x, 4 depends on k
and || A]|r [22,44]. ||A — Ak||F is often data dependent. In the case of
NME, a rigorous theoretical upper bound on € remains unknown.

Given an approximation A of A, the next step is to reconstruct a
sketched merge tree from each column vector a of A. We reshape a
into an n X n matrix W and construct a sketched tree 7' by computlng
the MST of W. The distance matrix D of the sketched tree 7' thus
approximates the distance matrix W’ of the blow-up tree T".

When a sketched merge tree is obtained via a MST, the theoretical
bounds on ||W — D|| are unknown, although MST does provide good
sketched trees in practice. Finally, although the smoothing process does
not alter the tree structure significantly, it does introduce some error in
the final sketched tree, whose theoretical bound is not yet established.

A practical consideration is the simplification of a sketched tree T’
coming from NMF. T’ without simplification is an approximation of the
blow-up tree T”. It contains many more nodes compared to the original
tree T". Some of these are internal nodes with exactly one parent node
and one child node. In some cases, the distance between two nodes is
almost zero. We further simplify 7" to obtain a final sketched tree T’
by removing internal nodes and nodes that are too close to each other;
see Appendix B for details. To return a basis tree using NMF, we obtain
each basis tree by applying MST to columns b; of B with appropriate
simplification, as illustrated in Fig. 1 (step 5).

Therefore, although we have obtained good experimental results in
sketching merge trees, there is still a gap between theory and practice
for individual sketched trees. Filling such a gap is left for future work.

B IMPLEMENTATION

In this section, we provide some implementation details for various
algorithms employed in our merge tree sketching framework.
Persistence simplification. We apply persistence simplification to each
dataset before computing the merge trees. The simplification level p is
chosen based on the persistence graph [32], where the x-axis represents
the persistence in proportion to the maximum persistence across all
instances in a dataset, the y-axis captures the number of local maxima
(in our setting), and a plateau implies a stable range of scales to separate
features from noise. We simplify the scalar field so that critical points
with persistence less than the chosen simplification level are removed.
See Fig. 17 for the persistence graph of the Heated Cylinder dataset. p
is chosen to be 9.7% of the max persistence. Similarly, p for the Corner
Flow, Vortex Street, and Square Cylinder Flow dataset is 4.85%, 2%,
6%, respectively. For the Isabel dataset, we choose p = 2% to be
consistent with the work by Pont et al. [57].

Initializing the coupling probability distribution. In Sec. 6, we
introduce the blowup procedure that transforms a merge tree 7" to a
larger tree T". This procedure optimizes the probability of coupling

50

40

3014

204

Maxima Count

10

0,
00 .10 20 30 40 50 .60 .70 .80 .90
P
Fig. 17: Heated Cylinder: Persistence simplification using a persistence
graph.

between T and T', the Fréchet mean. Since the optimization process is
finding a coupling matrix that is a local minimum of the loss function,
similar input trees may give different coupling matrices due to the
optimization process, which may affect the ordering of nodes in the
blown-up trees, leading to completely different vectorization results and
large sketch errors. Specifically for time-varying data, to ensure that
adjacent trees are initialized with similar coupling probabilities w.r.t.
T, we use the coupling probability between 7;_1 and 7T’ to initialize
the coupling probability between T; and T, for 1 < i < N — 1. This
strategy is based on the assumption that merge trees from adjacent time
instances share similar structures.

Matrix sketching algorithms. In the main paper, we use two variants
of column subset selection (CSS) algorithms. We may also consider
non-negative matrix factorization (NMF) to sketch the data matrix A.
Here, we provide pseudocode for these matrix sketching algorithms.

* Modified Length Squared Sampling (LSS)

1. s+ 0, B is an empty matrix, A’ = A.

2. 5 + s+ 1. Select column ¢ from A’ with the largest
squared norm (or select ¢ randomly proportional to the
squared norm) and add it as a column to B. Remove ¢ from
A

3. For each remaining column ¢’ in A’ (i.e., ¢’ # ¢), factor
out the component along c as:

@ u < /||
b) ¢« —(u,c)u
4. While s < k, go to step 2.

« [terative Feature Selection (IFS)

1. Choose a subset of k column indices r = {il, 22, ...
uniformly at random.

2. Construct subset B,
columns indexed by r.

3. Repeatforj =1,2,...,k:

7’Lkz}

ai,] of A with

= [ailvai2:~~~7

(a) Let X};; denote matrix formed by replacing column
ai w1th column a; in B, where | € [n] \ 7. Let X b
denote its Moore-Penrose pseudoinverse.

(b) Find w = argmin;¢(,\ |4 — X]-lX;AHF.

(©) By + Xjuw.

@ 7 (r\ {i;}) Ufw).

* Non-Negative Matrix Factorization (NMF)

1. Given A and k, initialize B € R***, Y = X7 ¢ RMV
using the non-negative double singular value decomposition
algorithm of Boutsidis and Gallopoulos [9].

2. Normalize columns of B and X to unit L2 norm. Let
E=A-BX".

3. Repeat until convergence: for j = 1,2,...,k,

(@ Q<+ E+ bjxjr.

(b) x5 + [Q" b4
(©) by + [Qx;]+.
(d) by < b;/||bs1].
() E+ Q—bjz].

Here, [Q]+ means that all negative elements of the matrix) are
set to zero.

Merge tree simplification. To reconstruct a sketched tree, we reshape
the sketched column vector & of Aintoann X n matrix W', and obtain
a tree structure 7" by computing its MST. 7" is an approximation of
the blown-up tree 7". To get a tree approximation closer to the original
input tree T', we further simplify 7" as described below.

The simplification process has two parameters. The first parameter
« is used to merge internal nodes that are too close (< «) to each
other. Let R be the diameter of 7" and n the number of nodes in 7”.
a is set to be co R/n? for ¢, € {0.5,1,2}. The second parameter
B = c¢gR/n is used to merge leaf nodes that are too close (<) to the
parent node, where cg € {0.5,1,2}. Let W' be the weight matrix of
T’. The simplification process is as follows:

1. Remove from 7" all edges (u,v) where W’ (u,v) < a.

2. Merge all leaf nodes u with their respective parent node v if
W' (u,v) < B.

3. Remove all the internal nodes.

The tree 7" obtained after simplification is the final sketched tree.
Merge tree layout. To visualize both input merge trees and sketched
merge trees, we experiment with a few strategies. To draw an input
merge tree 7" equipped with a function defined on its nodes, f : V' — R,
we set each node u € V to be at location (xu, yu); where y, =
f(u), and z,, is chosen within a bounding box while avoiding edge
intersections. The edge (u,v) is drawn proportional to its weight
W (u,v) = |£(w) = F(0)] = g — 9ol

To draw a sketched tree as a merge tree, we perform the following
steps:

1. We fix the root of the sketched tree at (0, 0).

2. The y-coordinate of each child node is determined by the weight
of the edge between the node and its parent.

3. The x-coordinate is determined by the left-to-right ordering of the
child nodes. We consider ordering the child nodes that share the
same parent node by using a heuristic strategy described below.

(a) Sort the child nodes by their size of the subtrees of which
the child node is the root in ascending order. This sorting
tries to keep larger subtrees on the right so the overall shape
of the tree is protected and straightforward to read.

(b) If the sizes of multiple subtrees are the same, we apply
the following strategy: we sort child nodes by their
distances to the parent node in descending order. Suppose
the order of child nodes after sorting is ci,ca,...,ct.
If t is odd, we reorder the nodes from left to right

as Ct,Ct—2,Ct—4,...,C3,C1,C2,C4,...,Ct—3,C¢t—1.
If ¢t is even, we reorder the nodes as
Ct—1,C¢t—3,Ct—5,...,C3,C1,C2,C4,...,Ct—2,Ct.

The idea is to keep the child nodes that have a larger distance to the
parent near the center to avoid edge crossings between sibling nodes
and their subtrees. R

Our layout strategy assumes that the trees are rooted. However, 7',
which is our approximation of 7', is not rooted. In our experiments, we
use two strategies to pick a root for T and align 7" and T for visual
comparison.

Using the balanced layout strategy, we pick the node u of T that
minimizes the sum of distances to all other nodes. Set u to be the
balanced root of T'. Similarly, we find the balanced root v of the input

tree T. T and T" are drawn using the balanced roots.

Using the root alignment strategy, we obtain the root node of the

sketched tree by keeping track of the root node during the entire sketch-
ing process. We can get the root node of T” because it is either a
duplicate node or the same node of the root node in 7". Then we can
get the root node in 1", as the labels in the sketched blown-up tree are
identical to T”. Lastly, by keeping track of the process of merge tree
simplification, we can know the label of the root of T.
Other details. Our framework is mainly implemented in Python. The
code to compute MST from a given weight matrix is implemented in
Java. For data processing and merge tree visualization, we use Python
packages, including numpy, matplotlib, and networkx. In addition, the
GW framework of Chowdhury and Needham [18] requires the Python
Optimal Transport (POT) package.

C ADDITIONAL RESULTS AND RUNTIME ANALYSIS
C.1 Vortex Street Dataset

We demonstrate the use of our framework in detecting cyclic behaviors
using the classic time-varying 2D von Karman Vortex Street dataset.
We use the velocity magnitude field (as used in a previous work [60])
and compute its split tree. There are 157 time instances, which give
rise to a set of merge trees.

Coefficient matrix. The coefficient matrix generated with IFS is shown
in Fig. 18 (Top) using k = 3. We observe a periodicity of 36 ~ 38
time steps. To show this periodicity, we highlight instances 14, 50, 88,
and 125 (blue boxes) in the coefficient matrix. We can see that all these
instances indicate the starting points of four long yellow blocks on the
second row of the coefficient matrix.

We further compare the corresponding scalar fields (instances 14, 50,

and 88) highlighted with local maxima (red points) and saddles (white
points) in Fig. 18 (bottom left). The scalar field visualization indicates
that instances 14 and 88 have nearly identical structures, whereas
instance 50 appears to be a mirror image of instance 14. The relation
between instances 14 and 50 is not surprising, as our measure network
formulation of the merge tree encodes only its intrinsic information,
and thus the GW distance between T4 and T5¢ is considered to be
near-zero within our sketching framework. For comparison, there is a
clear structural change between instance 14 and 33 in Fig. 18 (bottom
left), where instance 33 is chosen within a particular period.
GW distance matrix. The observed periodicity is further confirmed
with the GW distance matrix, as shown in Fig. 18 (bottom right). We
compute pairwise GW distances between pairs of instances and obtain
a 157 x 157 matrix, where yellow means high and blue means low
distance values. Similar to our observations with the coefficient matrix,
we clearly see a repeating pattern in the GW distance matrix with a
periodicity of 36 ~ 38.

C.2 Square Cylinder Flow

For the Square Cylinder Flow dataset, we provide additional experimen-
tal results on the periodicity observed from the GW distance matrix.

The observed periodicity can be further validated by the GW dis-
tance matrix. As shown in Fig. 19, we zoom into this chosen period
and observe repeated patterns in the distance matrix, which indicates
structural similarities among these merge trees.

C.3 Sketch Error Plots for Alternative Approaches

We include the sketch error plots for sketching scalar fields and sketch-
ing O-dimensional persistence images in Fig. 20 for completeness.

C.4 Runtime Analysis

We report the runtime in computing the pairwise Gromov-Wasserstein
distances between merge trees for all real-world datasets in Tab. 1. The
number of comparisons is equal to w where ¢ is the number of

time steps. Average runtime is equal to _ total runtime _ - A]| thege
of comparisons

distances are easy and efficient to compute.

The runtime was collected using Python hosted by Jupyter Notebook
on a Windows 11 system with a 12th Gen Intel(R) Core(TM) i9-12900H
2.50 GHz CPU with 32 GB memory.

50 60

0 14 20 40

80 88 100

120 125 140

0010
0.008
0.006
0.004
0.002
0.000

Fig. 18: Vortex Street: we highlight instance 14, 50, 88, and 125 in the coefficient matrix (TOP) to illustrate the periodicity of its topological structures,
using IFS. The periodicity is also confirmed within the GW distance matrix (bottom right). Visualizations of selected scalar fields are shown in the

Bottom Left.

Fig. 19: Square Cylmder Flow: A subset of the’ pairwise GW distance
matrix among T2 to Tv3.
Sketch error (Scalar Field) 1e-7 Sketch error (Persistence Image)
—— CSS-IFS 8 —— CSS-IFS
250 —— CS5-LSS —— CS5-LSS

~

N

o

o
o

«

=
I
=)

IS

Sketch error
Sketch error

=

o

=)
w

N

-

i &
0 0

2 3 4 5 6 2 8 9 10 2 4 5 6

k
Fig. 20: Sketch errorkplots for sketching scalar fields (left) and sketching
0-dimensional persistence images (right).

7 8 9 10

Dataset Max # of Nodes # of Comparisons Total R Average R
HeatedCylinder (2D) 1.2967 0.0028
CornerFlow (2D) 30 4950 21.1775 0.0043
VortexStreet (2D) 62 12246 303.5248 0.0248
SquareCylinderFlow (2D) 18 5050 12.1553 0.0024
Isabel (3D) 194 66 4.2124 0.0638

Table 1: Runtime (in seconds) for pairwise GW distances between merge
trees across all real-world datasets.

D DiSCUSSIONS ON SKETCHED TREES AND NMF

In this paper, we apply matrix sketching to a set of merge trees and
utilize the basis set as a consensus set that captures the modes from
the underlying phenomena. As a byproduct, the sketching framework
also produces sketched trees. In this section, we discuss the sketched
trees, as well as additional matrix sketching techniques beyond column
subset selection.

Investigation of sketched trees. We validate the claim that given three

basis trees in S, each tree in 7 can be approximately reconstructed from
a linear combination of trees in S. For the Heated Cylinder dataset,
we compare a subset of input trees (blue boxes) against their sketched
versions (red boxes) using IFS in Fig. 21. Even though we use only
three basis trees, a large number of input trees—such as 7%, T15—and
their sketched versions are indistinguishable with small errors. Even
though 754 is considered an outlier relative to other input trees, its
sketched version does not deviate significantly from the original tree.
We highlight the subtrees with noticeable structural differences before
and after sketching for 754, whose roots are pointed by black arrows.

7 15 24

Fig. 21: Heated Cylinder: Comparing each sketched tree (red box) with
its corresponding input tree (blue box), highlighting noticeable structural
differences among subtrees (whose roots are pointed by black arrows)
before and after sketching.

In Fig. 22, we further investigate the weight matrices from different
stages of the sketching pipeline for tree 7" = T54. From left to right,
we show the weight matrix W of the input tree, its blow-up matrix W'
(which is linearized to a column vector a), the approximated column
vector a after sketching (reshaped into a square matrix), the weight
matrix W’ of the MST derived from the reshaped a, the weight matrix

of the MST after simplification, and root alignment W wrt. T. We
observe minor changes between W (blue box) and W (red box), which
explain the structural differences before and after sketching in Fig. 21.

Map_blowup Map_approx
0 3520 5 20

2 1

3 ®

o s 1 5 x

g ¥ 8 &5 5

00 018 036 034 072 03 108 126 00 018 03 058 072 05 108 126 00 016 032 o048 06s 08 09 112

|

L |

Map rearrange_approx
PR T s 1A M TR 1)

Map_approx_MST (no compression) Map_approx MST
o 5 " 15 20 25 2 0 2 4 6°8 D 2 18 1 9 2

00 018 036 o054 072 03 108 126

I)

00 018 036 05 072 05 108 126

00 018 036 054 072 03 108 126

|
|

Fig. 22: Heated Cylinder: weight matrices associated with T4 during
the sketching process with IFS.

Sketching with NMF. For the Heated Cylinder dataset, we also discuss
the sketching results using matrix sketching techniques beyond CSS
such as non-negative matrix factorization (NMF). In NMF, the goal is
to compute non-negative matrices B and Y such that | A — A||p =
||A — BY||F is minimized. We use the implementation provided in
the decomposition module of the scikit-learn package [19,30]. The
algorithm initializes matrices B and X = Y7 and minimizes the
residual Q = A — BXT + b, acJT alternately with respect to column
vectors b; and x; of B and X, respectively, subject to the constraints
b]‘ Z Oanda:j Z 0.

Using NMF, we show the three basis trees together with a coef-
ficient matrix in Fig. 23. Although these basis trees are generated
by matrix factorization, that is, they do not correspond to any input
trees, they nicely pick up the structural variations in the input and
are shown to resemble the basis trees chosen by column selections
(cf., Fig. 7 and Fig. 9). This observation shows that even though these
matrix sketching techniques employ different (randomized) algorithms,
they all give rise to reasonable choices of basis trees, which leads to
reasonable sketching results.

Coefficient Matrix _ﬂn e

0 s 10 15 20 25 30

—
Tor oot IR)

Fig. 23: Heated Cylinder: Coefficient matrices and basis trees used to
sketch the dataset with three basis trees using NMF.

Potential applications. Although neither the sketched trees nor NMF
are the main focus in studying the time-varying datasets discussed in
this paper, we may consider other potential applications. For instance,
our framework could be applied to a set of plant root systems (e.g.,
https://roots.ornl.gov/), where each plant root may be digital-
ized and modeled as merge trees. Our framework may be used to
characterize different root classes where NMF can be used to obtain
new representatives from the set that are not part of the original input.
Furthermore, the distance between a sketched tree and the original tree
captures how much a particular input tree could be approximated by
the basis set. This is left for future work.

E COMPARISON WITH WASSERSTEIN DISTANCES

In this section, we perform experimental comparisons with Wasser-
stein distance for merge trees [57] by Pont et al. We visualize the
distance matrices using our GW distance and the Wasserstein distance
to compare their performances in identifying topological similarities
and differences. We use the HeatedCylinder and Isabel datasets. For
fair comparisons, both methods use only split trees (describing maxima
and saddle relations).

HeatedCylinder dataset. Even though the topological changes in
the HeatedCylinder dataset are relatively simple, we observe obvious
differences between two pairwise distance matrices.

One noticeable difference is the similarity between time steps 8 and
9 (in cyan boxes) and their adjacent time steps (in green and orange
boxes, respectively); see Figure 24 (top left and top middle). The GW
distance indicates that time steps 8 and 9 are similar to time step 10 and
obviously different from time step 7, whereas the Wasserstein distance
reaches the opposite conclusion. We visualize the merge tree structures
for time steps 7 to 10, as in the green, cyan, and orange boxes on the
top right of Figure 24. Apparently, the merge tree structures among
time steps 8, 9, and 10 are similar, whereas the merge tree at time step 7
has one fewer branch. In other words, the Wasserstein distance fails to
detect the topological change from time step 7 to 8, and in the following
raises a false-positive change from time step 9 to 10.

We elaborate on such a “false-positive” from the Wasserstein dis-

tance using another example. In the pairwise distance matrix for Wasser-
stein distance (see Figure 24 top middle), the red box highlights a
topological feature change from time steps 17 to 18. However, this
transition is not detected in the GW distance matrix (Figure 24 top
left). We now use the branch decomposition layout to visualize the
merge tree at time steps 17 and 18 in Figure 24 (middle right, red solid
box). In the merge trees at both time steps, we use blue, purple, and
pink to highlight three branches; branches in the same color indicate
the same pair of critical points in the scalar field. In the transition
from time steps 17 to 18, the branch decomposition hierarchy of the
three highlighted branches is largely shifted, which is detected by the
Wasserstein distance as topological changes. However, in the binary
tree layout of these two merge trees, we see that the merge tree struc-
ture is almost unchanged, see Figure 24 (middle right, red dotted box),
indicating that the detected topological change is false-positive. In this
example, we show that even though there are only small function value
perturbations across time steps, the branch decomposition result can
change greatly. Therefore, involving branch decomposition in computa-
tion, the Wasserstein distance for merge trees suffers from instability of
branch decomposition from small-scale perturbations, which is already
mentioned by other works [68]. In comparison, our method is more
robust than the Wasserstein distance against such instabilities.
Isabel dataset. Recall that the time steps for the Isabel dataset can be
clustered into three phases of the hurricane, each of which contains four
consecutive time steps. As shown in Figure 24 (bottom left), we use
magenta-dotted boxes to identify time instances in the same phase as
the ground truth for clustering. The GW distance successfully captures
the topological variations across three known phases of the Hurricane
Isabel.

In contrast, the Wasserstein distance fails to distinguish the topologi-
cal variation between the formation (first) and the drift (second) phase
of the hurricane: there is no block structure transitioning between time
steps 5 and 30. Besides, in the MDS plot visualizing the Wasserstein

https://roots.ornl.gov/

ours Wasserstein

0
07
06
05
04
03
02
01
0.0
0 5 10 15 20 25 30
20
15
10
5
o

2 3 5 30 31 32 33 45 46 47 48 2 3 4 5 30 31 32 33 45 46 47 48

Fig. 24: Experimental comparison with Wasserstein distance for merge trees. Top row: HeatedCylinder dataset; left and middle: pairwise distance
matrix for GW distance and Wasserstein distance, respectively; right: merge tree in binary tree layout at time steps 7 to 10, and merge tree in both
branch decomposition layout and in binary tree layout at time steps 17 and 18. Bottom row: /sabel dataset; left and middle: pairwise distance matrix
for GW distance and Wasserstein distance, respectively; right: MDS scatter plot [64] using the Wasserstein distance, in which colors represent the

phase of time instances.

distance (Figure 24 bottom right), time steps 4 and 5 in the formation
phase of the hurricane are closer to the cluster of time steps 30 to 33
in the drift phase than to time steps 2 and 3 in the formation phase.
The result shows that the Wasserstein distance cannot detect the phase
transition between the formation and the drift phase of the hurricane.
On the other hand, the Wasserstein distance does provide a clearer
distinction in the landfall (third) phase compared with the GW distance.

e formation (first)
® drift (second)
@ landfall (third)

2

33 ®
31 &
30

	Introduction
	An Overview and a Primer on Matrix Sketching
	A Simple Motivational Example
	Related Work
	Technical Background
	Methods
	Experimental Results
	Heated Cylinder Dataset
	Corner Flow Dataset
	Flow Behind a Square Cylinder Dataset
	Isabel 3D Dataset

	Discussion: Alternative Vectorization Approaches
	Conclusion
	Theoretical Considerations
	Implementation
	Additional Results and Runtime Analysis
	Vortex Street Dataset
	Square Cylinder Flow
	Sketch Error Plots for Alternative Approaches
	Runtime Analysis

	Discussions on Sketched Trees and NMF
	Comparison with Wasserstein Distances

